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Abstract

The Goals algorithm for adaptive modeling is extended to the case of discrete mod-
els such as those characterized by lattice structures (or the static behavior molecular
systems) by using surrogate models obtained from continuum approximations of the
lattice. The result is a technique that could provide for scale-bridging between con-
tinuum models and atomistic models, although the present development concerns only
simple algebraic systems. An example is provided in which quantities of interest in
a large number of degrees of freedom system are computed to a preset tolerance in
relatively few low-order approximations.

Keywords: multiscale models, adaptive modeling, error estimates, continuum/lattice
models.

1 Introduction

In earlier work [6, 8, 4], we developed techniques for assessing model and approximation error
in solid and continuum mechanics, and methods for adapting the mathematical models of
certain events to control modeling error. These techniques fall under the general heading of
hierarchical modeling and Goal-oriented a posteriori error estimation and model adaptivity.
A general theory for estimating modeling error was given in [4]. In the present paper,
we extend this approach to the equilibrium analysis of “atomic” lattices, where the base
model is defined by a regular periodic lattice and the surrogate models are obtained from
continuum models characterized by PDE’s; precisely the opposite situation is encountered
in modeling micro-scale effects in multi-phase heterogeneous materials [6, 8]. An important
byproduct of our analysis is a new approach to modeling the transition from continuum
models to “molecular” models. In particular, we present techniques in which the notion of
convergence of finite element models of the continuum is unambiguously preserved, and in
which convergence of the base molecular or lattice model is trivial. Thus, the notion of a
continuum atomistic interface and coupling is precisely determined in a rigorous way.

The paper is organized as follows: In Section 2, we provide a brief summary of the procedure
proposed in [4] to estimate the modeling errors with respect to some quantity of interest. We
present in Section 3 a model problem for static equilibrium of a material lattice and introduce
in Section 4 a simple problem which will be later referred to as the continuum model. The
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continuum model is given in terms of a partial differential equation and will be considered
here as a surrogate problem of the lattice model problem. We apply in Section 5 the
technique described in Section 2 to the continuum/lattice problems for estimating modeling
errors, i.e. the difference between the solutions of the continuum and lattice models, and
describe an adaptive algorithm for controlling modeling errors. We demonstrate in Section 6
the efficiency of the adaptive algorithm on two numerical examples. Conclusions are given
in Section 7.

2 Modeling Errors in Quantities of Interest

The abstract setting for the theory of Goal-oriented estimation of modeling error is this: we
wish to find a vector u in a topological vector space V such that

B(u,v) = F (v) ∀v ∈ V (1)

where B(·, ·) is a bilinear (or semilinear) form on V and F is a linear functional on V . Of
interest is a quantity of interest Q(u), Q being a functional on V . To characterize Q, we
seek an influence vector p which is a solution of the dual problem,

B(v,p) = Q(v) ∀v ∈ V (2)

Problem (1) is called the primal base problem; problem (2) the dual base problem. If B(·, ·)
is nonlinear in u, we replace (2) by B′(u;v,p) = Q′(u;v), where B′(·; ·, ·) and Q′(·; ·) are
functional (Gâteaux) derivatives of B(·, ·) and Q(·) respectively.

The basic idea is that (1) and (2) are intractable: too complex or too large to be solved by
any practical means. Therefore, we seek simpler surrogate problems that are tractable and
of the form

B0(u0,v) = F (v) ∀v ∈ V

B0(v,p0) = Q(v) ∀v ∈ V
(3)

B0(·, ·) being a new bilinear form. In [4] (see also [2], it is shown that

Q(u) − Q(u0) = R(u0,p) (4)

where R(u0,v) is the residual functional

R(u0,v) = F (v) − B(u0,v) (5)

If the problem is nonlinear, the right-hand-side of (4) is replaced by R(u0,p)+r, where r is a
functional involving quadratic and higher terms in the errors e0 = u−u0 and ε0 = p−p0. In
applications, we often neglect such higher order terms, and use R(u0,p) as an approximation
of Q(u) − Q(u0). The use of such relations to develop adaptive modeling schemes for
estimating and controlling errors in modeling heterogeneous materials is described in [6, 8].
Our aim is to use (4) as a basis for estimating and controlling errors in models involving
a combination of discrete and continuum attributes. Here, the base model is one provided
by the discrete lattice structure, representing, for instance, a molecular dynamics system in
equilibrium, and in which the surrogate model is to be constructed from a continuum model
of the material.
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Figure 1: A regular periodic lattice in R
2.

3 A Model Lattice Problem

To fix ideas, we consider a simple case of static equilibrium of a material lattice with regular
periodic micro-structure. The regular lattice L has lattice uniform width H and extends
indefinitely in R

d, d = 2 or 3. For the sake of simplicity, we only consider two-dimensional
domains here, i.e. d = 2, as indicated in Fig. 1. All results presented in this report are
easily extended to three-dimensional problems. The goal is to determine a discrete scalar
field u which takes on values ui,j at each lattice point xi,j , (i, j) ∈ Z

2, and which satisfies
the equilibrium equation

∑

(i,j)∈Z2

ai,jui,j − fi,j = 0 (6)

where fi,j = f(xi,j), f being an (i, j)-periodic prescribed force field, and ai,j are appropriate
constants.

To further restrict the problem while also establishing conditions sufficient to guarantee the
existence of solutions to (1), we shall make the following simplifications:

1. A subdomain Ω = (0, a)× (0, b) ⊂ R
2 is identified with origin (0, 0) at a lattice point,

as shown in Fig. 2, and the lengths a and b are naturally chosen as multiples of H .
Note that in more general settings, Ω can be a more complex domain than just a
rectangle and may depend on the structure of the lattice as well.

2. The boundary of Ω is denoted ∂Ω and ui,j = 0 at points xi,j ∈ ∂Ω.

3. fi,j is given at all points xi,j ∈ Ω.

4. The coefficients representing the interactions of adjacent ”atoms” at sites in the lattice
are given.

For simplicity, one example is the difference stencil,

−
1

H2
ui−1,j −

1

H2
ui,j−1 +

4

H2
ui,j −

1

H2
ui+1,j −

1

H2
ui,j+1 − fi,j = 0 (7)

which we write in matrix form as
Au = f (8)
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Figure 2: A subdomain Ω of R
2 and an interior patch ω of four cells surrounding lattice site

x∗ = (x∗, y∗).

where u and f are N -vectors and A is an N ×N matrix, assuming there are N lattice points
in the closure of Ω.

In a more abstract setting, we introduce the finite dimensional vector space

VL = {v ∈ R
N, vk = component of v corresponding to

lattice point xk ∈ Ω, vk = 0 on ∂Ω}
(9)

and the bilinear and linear forms,

B : VL × VL → R; B(u,v) = vT Au

F : VL → R; F (v) = vT f
(10)

Then, the lattice equilibrium problem is

Find u ∈ VL such that B(u,v) = F (v) ∀v ∈ VL (11)

Our goal is not to calculate u, but some functional of u defined by a quantity of interest

Q(u). For example, if ω is a patch of four cells surrounding a particular lattice point x∗

(see Fig. 2), we may be interested in the weighted average value of u over the cell:

Q(u) =
1

16

[

(uk1
+ uk2

+ uk3
+ uk4

) + 2(uk5
+ uk6

+ uk7
+ uk8

) + 4uk9

]

=
9
∑

l=1

wkl
ukl

(12)

wkl
being the indicated weights. This corresponds to the average of the interpolant of u

over the patch ω. The problem of finding a vector p ∈ VL such that

B(v,p) = Q(v) ∀v ∈ VL (13)

is then the base dual problem for the functional Q, and p is the dual solution or influence

vector for the lattice problem.
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4 A Continuum Surrogate Problem

We propose here a simple continuum model deduced from the lattice model. Our principal
motivation in this paper is to focus on the adaptive algorithm rather than modeling issues.
Various techniques have been suggested to derive continuum models, see for example [3, 7].
For the lattice model (8), in the limit as H → 0, we consider here the following continuum
model of the problem:

Find u0 ∈ V such that B0(u0, v) = F0(v) ∀v ∈ V (14)

and
Find p0 ∈ V such that B0(v, p0) = Q0(v) ∀v ∈ V (15)

where now

B0(u, v) =

∫

Ω

∇u · ∇v dxdy (16)

F0(v) =

∫

Ω

fv dxdy (17)

Q0(v) =
1

|ω|

∫

ω

v dxdy (18)

V = {v ∈ H1(Ω) : v = 0 on ∂Ω} = H1
0 (Ω) (19)

Clearly, in the limit as H → 0, the lattice model (8) converges to the model of the Poisson
problem −∆u = f in Ω, u = 0 on ∂Ω. Of course, the spaces VL and V are now incompatible,
VL being of dimension N and V infinite dimensional.

We must next map the continuum description onto the lattice model to be able to compare
errors in the quantities of interest. This is done as follows. Let Π : V → VL denote a
(collocation) mapping from V onto VL defined by

Πw = v = {vk}
N
k=1

vk = wρ(xk) =

∫

Bρ(xk)

kρ(x,xk)w(x) dx

ρ � H

xk = lattice site in L

(20)

Here Bρ(xk) is a ball of radius ρ centered at the lattice node xk , kρ(x,xk) is a smooth kernel
vanishing outside Bρ(xk) and normalized so that

∫

Bρ(xk)

kρ(x,xk) dx = 1.

Thus, wρ is the mollifier (or mollification) of w. The operator Π thus produces an N -vector

in VL defined on the lattice whose components are simply the values of the functions w in

V , smoothed so that their pointwise values are well-defined (the functions w ∈ V , being in
H1(Ω), are not necessarily continuous for 2D and 3D domains). In practice, we replace wρ

by finite element approximations wh for mesh size h sufficiently small. This is discussed in
Section 5, to follow.

Applying the ideas of Section 2, we now derive an estimate for the modeling error. Let
u0 ∈ V be the unique solution of (14) and p ∈ VL be the influence vector for Q satisfying
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(13). Then, according to (4), the modeling error e0 = u − Πu0 = u − u0 in the quantity of
interest Q is

Q(e0) = Q(u) − Q(u0) = R(u0,p). (21)

We can rewrite the residual as:

R(u0,p) = R(u0,p0) + R(u0, ε0) (22)

= R(u0,p0) + B(e0, ε0) (23)

where p0 = Πp0, p0 being the influence function for the surrogate problem (15), and ε0 =
p − p0. Note that (23) follows from (22) by making use of the error equation B(e0,v) =
R(u0,v), ∀v ∈ V and by taking v = ε0. An estimate of the modeling error is then obtained
by neglecting the higher order term B(e0, ε0) so that Q(e0) ≈ R(u0,p0), or by computing
bounds on B(e0, ε0) as in [6], or computing the exact dual solution vector p.

5 Approximations of the Continuum Model

5.1 Discrete approximations

In general, the continuum models (14) and (15) cannot be solved exactly, and numerical
approximations, such as finite element approximations, of u0 and p0, must be obtained.
Then, instead of (20), a more direct construction of a mapping from V onto VL can be
defined.

Let {Ph} denote a family of partitions of Ω into finite elements K each being the image
under invertible maps FK of a master element K̂ over which polynomial test functions are
defined (see, e.g. [1]). We shall assume that the partitions are regular and that the usual
interpolation properties of finite element interpolation of functions in Sobolev spaces are
in force [5]. In this way, we generate a family of finite-dimensional subspaces {V h} of V ,
with

⋃

h>0 V h everywhere dense in, say, H1(Ω). For a given subspace V h, the finite element
approximations of (14) and (15) are thus

B0(u
h
0 , vh) = F0(v

h) ∀vh ∈ V h (24)

B0(v
h, ph

0) = Q0(v
h) ∀vh ∈ V h (25)

Instead of (20), we introduce the “collocation” operator Πh: V h → VL such that

Πhvh = vh = {(vh)k}
N
k=1

(vh)k = vh(xk)

xk = lattice site in Ω

(26)

5.2 Estimate of modeling error

To estimate the error in Q(uh
0 ), we proceed as before. Using uh

0 = Πhuh
0 and ph

0 = Πhph
0

instead of u0 and p0, respectively, the estimate (21) becomes

Q(u) − Q(uh

0) = R(uh
0 ,p)

= R(uh
0 ,ph

0 ) + B(u − uh
0 ,p− ph

0 ) (27)
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Neglecting the higher order term in u− uh
0 , we then obtain the error estimate:

E = R(uh
0 ,ph

0 ) ≈ Q(u) − Q(uh

0
) (28)

It is important to note that there is no connection between the lattice dimension H and
the mesh size h. Convergence of the finite element approximation is unambiguous: as
h → 0, uh

0 → u0 in H1(Ω), independently of H (for quasi-uniform refinements, with h =
maxhK , hK = dia(K)).

5.3 Adaptive modeling strategy

We now describe an adaptive modeling strategy aimed at reducing computational costs.
For instance, let us suppose that we cannot solve the N -order system (11), N being a large
number, but that we wish to compute for the vector u the quantity of interest Q(u) to
within a tolerance γtol, i.e.

|Q(u) − Q(uh
0 )|

|Q(u)|
≤ γtol.

We propose a Goal-oriented hierarchical modeling algorithm that employs concepts similar
to those developed in [6, 8] for computing local features in a lattice. Again, let L denote
the lattice of N sites covering the domain Ω with lattice width H . In addition, let Ω be
partitioned into K cells of size larger than H (see Fig. 3). The error estimate E can then
be decomposed into contributions over each cell as

E = R(uh
0 ,ph

0 ) =

K
∑

n=1

Rn(uh
0 ,ph

0 ) (29)

where Rn(uh
0 ,ph

0 ) denotes the contribution in the nth cell to the total error E . More explic-
itly, recall that

R(uh
0 ,ph

0 ) = F (ph
0 ) − B(uh

0 ,ph
0 )

= phT
0 f − phT

0 Auh
0

= phT
0

(

f − Auh
0

)

=

N
∑

k=1

ph
0k

(

fk −

N
∑

l=1

Aklu
h
0l

)

Then the contribution En from the nth cell Θn is computed according to

En = Rn(uh
0 ,ph

0 ) =

N
∑

k=1

βn
k

[

ph
0k

(

fk −

N
∑

l=1

Aklu
h
0l

)]

(30)

where the coefficients βn
k depend on the location of the sites xk with respect to the cell Θn.

Let θk be the number of cells that contain point xk. This number can take on the values
4, 2, or 1, depending on whether xk is an interior site of L, or lies on one of the boundary
edges of L, or is one of the four corners of L, respectively. Then

βn
k =

{

0 if xk 6∈ Θ̄n

θ−1
k if xk ∈ Θ̄n

The algorithm for adaptively modeling the lattice model with a continuum model is as
follows:

7



1. Set s = 0

2. Replace the lattice model with the continuum model (14) and solve for a (very accu-
rate) finite element approximation uh

0 of u0. Compute also an approximation ph
0 of

p0.

3. Evaluate uh
0 = Πhuh

0 , ph
0 = Πhph

0 , and the quantity of interest Q(uh
0 ).

4. Estimate the error in Q(uh
0 ) using (28), i.e. compute E(0) = R(uh

0 ,ph
0 ).

5. Check whether |E(0)|/|Q(uh
0) + E(0)| ≤ γtol? If yes, stop. If not, start the adaptive

process.

6. Set s = s + 1

(a) Compute the cell contributions En = Rn(uh
s−1,p

h
s−1), n = 1, . . . , K as in (30).

Construct the patch Ls made of the cells that have not been already refined and
that satisfy

|En|

maxn |En|
≥ α

where α is a user-defined parameter.

(b) Solve the reduced lattice problem on Ls for lattice vectors uh
s and ph

s , with
uh

s = uh
0 and ph

s = ph
0 at the points outside of Ls.

(c) Estimate the error in Q(uh
s ), i.e. compute E(s) = R(uh

s ,ph
s ) .

(d) Check whether |E(s)|/|Q(uh
s )+E(s)| ≤ γtol? If the answer is negative, go to step 6.

If the answer is affirmative, stop the adaptive process.

In this manner, we create a sequence of surrogate problems Ps, whose solutions are given by
(uh

s ,ph
s ), s = 0, 1, . . . . The initial surrogate problem P0 is obtained using the continuum

model only. The subsequent problems Ps, s = 1, 2, . . . , combine the solutions from the
continuum model and from the lattice model used only in the reduced lattice Ls. Obviously,
this is only one example of many possible variants of the adaptive process. Note that the
overall approach is also reminiscent of the multigrid method in which the lattice model
stands for the the fine-scale grid, and the surrogate model for the coarse-scale grid model.

6 Numerical Examples

To demonstrate the Goals algorithm for adaptive modeling, we consider examples of regular
lattices L on the square domain Ω = (0, 1)2 with lattice width H = (m− 1)−1, m = 11, 21,
. . . , 61. The lattice L is then made of N = m2 sites such that:

L = {(xi, yj) : i, j ∈ N, 0 ≤ i, j ≤ m − 1, xi = iH, yj = jH}

and will be referred to as a m × m lattice. We emphasize that the lattice solution is our
solution of reference, although in these examples, the scales provided by the finite element
solutions are finer. Again our only concern here is to demonstrate the feasibility of the
adaptive strategy.

In all examples, we partition the domain Ω into 25 cells of dimension 0.2 × 0.2 (see Fig. 3)
and the quantity of interest is the weighted average over the square domain ω of dimension
2H × 2H located at the center of the lattice, as defined in (12). In other words, the

8
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(1,0) x(0,0)
ω

Cells

Figure 3: A lattice in R
2.

quantity of interest is the weighted average of u at the lattice points xi,j where i, j ∈
{(m − 1)/2 − 1, (m − 1)/2, (m − 1)/2 + 1}. Note that the quantity of interest depends
indirectly on the lattice width H .

The exact solution to the continuum model problem is given by

−∆u0 = f, in Ω u0 = 0 on ∂Ω

where the datum f is determined such that u0(x, y) is known analytically. We will consider in
the following two different functions u0. The solution of the Poisson problem is approximated
using a mesh of 200× 200 bilinear elements. In all numerical experiments, the parameter α
introduced in step 6(a) of the adaptive algorithm will be chosen to be 0.5.

6.1 Example one

In this example, the continuum and lattice problems are set up in such a way that the exact
continuum solution is given by

u0(x, y) = 256x2(1 − x)2y2(1 − y)2e−100((x−0.25)2+(y−0.25)2)

The function u0 is essentially a differenced Gaussian centered at the point (0.25, 0.25) as
shown in Fig. 4. The term x2(1 − x)2y2(1 − y)2 ensures that u0 and the derivatives of u0

are zero on the boundary of Ω. The corresponding lattice solutions are shown in Fig. 5
for the 11 × 11 and 31 × 31 lattices. We show in Figs. 6 and 7 the continuum influence
function p0 and lattice influence influence p associated with the weighted average defined
above, for the 11 × 11 and 31 × 31 lattices, respectively. As expected, we observe that the
influence function becomes more localized as the lattice width decreases since, in all cases,
the quantity of interest is defined with respect to the nine lattice points at the center of the
lattice.

9



Figure 4: Accurate approximation of the continuum solution u0 for example 1.
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Figure 5: Lattice solutions of example 1 computed on the 11× 11 and 31 × 31 lattices.

In the next set of numerical experiments, we test the adaptive modeling strategy proposed
in Section 5.3. We set the tolerance on the error γtol to 5 percent. Figures 8 and 9 show
the sequence of refinements for the 21 × 21 lattice. In these plots, and in all similar plots
that follow, the grey area represents the subregion in which the solution has been computed
using the continuum model, that is, u0. The complementary subregion displaying the lattice
corresponds to the reduced lattice Ls, where s is the number of iterations already performed,
as explained in Section 5.3. The number l ≤ s in the various cells indicates the iteration at
which the cell has been added to the lattice Ls. In this case, eight refinements were necessary
to achieve a tolerance of 5 percent which resulted in all but three cells being refined. Note
that all plots are symmetric with respect to the diagonal x = y, as expected.

We show in Fig. 10 the final configurations obtained by adaptive modeling for all lattices.
We observe that eight iterations are needed for the 11× 11 and 21× 21 lattices to achieve a
tolerance of 5 percent on the error in the quantity of interest. For all the other lattices, the
algorithm yields the same final configuration after 5 iterations, but note that the cells are
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Figure 6: Influence functions associated with the 11 × 11 lattice: (left) continuum solution
p0 and (right) lattice solution p.
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Figure 7: Influence functions associated with the 31 × 31 lattice: (left) continuum solution
p0 and (right) lattice solution p.

not necessarily refined in the same order in all cases.

In Fig. 11, we show the effectivity indices and the evolution of the relative errors with respect
to the number of refinements obtained by adaptive modeling. The effectivity indices provide
a measure of the quality of the error estimates and are calculated as the ratio of the error
estimate E(s) at iteration s and the exact error, i.e.

λ =
|E(s)|

|Q(u) − Q(uh
s )|

Thus, an effectivity index of exactly one indicates that the error estimator perfectly estimates
the exact error. From Fig. 11, we observe that the effectivity indices oscillates between 0.95
and 1.1 except for one value. The rates of convergence are mostly monotonic apart from the
case of the 11 × 11 lattice. In this case, we believe that some internal boundary conditions
obtained from the continuum solution are in error and greatly increase the relative error in
the quantity of interest until these boundaries become part of the lattice by including the
adjacent cells.

Finally, we show in Fig. 12, for illustration purposes, the solutions obtained on the reduced
lattices L3 (after the third iteration) for the 11 × 11 and 31 × 31 lattices. These plots can
be qualitatively compared to the solutions that were computed on either the full continuum
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Figure 8: Sequence of surrogate models obtained by adaptive refinement for the 21 × 21
lattice (iterations s = 1 to 4). In these plots, the grey area represents the subregion in
which the solution is obtained using the continuum model. The complementary subregion
corresponds to the reduced lattice Ls. The number l ≤ s in the cells indicates the iteration
at which the cell has been added to the lattice Ls.

model or the full lattice model; see Figs. 4 and 5.

6.2 Example two

We repeat in this section the same types of numerical experiments as before but for a different
exact solution of the continuum model. Here the solution u0 (see Fig. 13) is obtained by
superposition of two “Gaussian functions” centered at the points (0.25, 0.25) and (0.50, 0.80)
such that:

u0(x, y) =128x2(1 − x)2y2(1 − y)2e−100((x−0.25)2+(y−0.25)2)

+ 512x2(1 − x)2y2(1 − y)2e−100((x−0.50)2+(y−0.80)2)

In this case, the weighted average error, still computed over the nine points at the center of
the lattices, is essentially influenced by the sources of error generated at the location of the
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Figure 9: Sequence of surrogate models obtained by adaptive refinement for the 21 × 21
lattice (iterations s = 5 to 8). In these plots, the grey area represents the subregion in
which the solution is obtained using the continuum model. The complementary subregion
corresponds to the reduced lattice Ls. The number l ≤ s in the cells indicates the iteration
at which the cell has been added to the lattice Ls.

two Gaussian functions. The corresponding lattice solutions are shown in Fig. 14 for the
11 × 11 and 31 × 31 lattices. Since the quantities of interest are the same as in example 1,
so are the associated influence functions.

For testing the adaptive modeling strategy proposed in Section 5.3, we select two tolerances,
i.e. γtol = 10 percent and γtol = 5 percent. Fig. 15 shows the sequence of refinements for the
21× 21 lattice. The algorithm automatically performed five refinements in order to achieve
a tolerance of 10 percent. We observe that the procedure essentially refines the cells that
cover the peaks of the Gaussian functions and the features of the quantity of interest. The
final configurations for all lattices are shown in Fig. 16 for γtol = 10 percent and in Fig. 17
for γtol = 5 percent. We observe that, apart from the 11 × 11 lattice, two to three extra
iterations are necessary to reduce the error from 10 percent to 5 percent. The evolution
of the effectivity indices and relative errors with respect to the number of refinements are
displayed in Figs. 18 and 19. The convergence results suggest that the adaptive algorithm
could be improved for our particular choice of quantity of interest. The erratic behavior prior
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to a dramatic reduction in error may be attributed to the fact that the sequence of model
enrichments employs local error measures rather than global error measures. Regardless of
the rate of convergence, quite acceptable, indeed excellent, estimates of the modeling error
are obtained. A more detailed study of various adaptive strategies and convergence will be
undertaken for more complex systems in future studies. Finally the solutions obtained on
the reduced lattices L2 for the 11×11 and 31×31 lattices are given in Fig. 20 and should be
compared with the solutions of Figs. 13 and 14. These pictures clearly demonstrate that the
proposed adaptive procedure automatically refines the regions in which the large sources of
modeling error contribute the most to the error in the quantity of interest.

7 Concluding Remarks

We have described in this paper a method to extend the Goals algorithm for adaptive mod-
eling to the case of discrete models by using a continuum model for the surrogate problem.
The method involves the derivation of a Goal-oriented error estimator to obtain computable
error measures of local quantities of interest. The proposed adaptive algorithm is an it-
erative procedure which allows one to determine the regions of the domain in which it is
necessary to use the lattice base model to control the error in the quantity of interest to
within some preset tolerance. The solution of the continuum model is merely used to pre-
scribe the internal boundary conditions for the reduced lattice problems. The methodology
was tested here on two numerical examples and the results clearly demonstrate the great
potential of this approach. In these examples, the continuum model is defined as a Poisson
problem and the lattice model was derived by using a five-point central difference stencil
for the Poisson equation. The main conclusion from this study is that it is actually feasible
to automatically select the sites of the lattice that need be included in the reduced lattice
problem to obtain accurate quantities of interest. Whenever the lattice problem is more
expensive to solve than the continuum problem, the use of this approach would allow for
substantial cost reductions. Our objective in the near future is to extend this methodol-
ogy to molecular statics or molecular dynamics for problems in nanomechanics. The main
issue will be to construct adequate surrogate problems from the lattice problems for multi-
scale modeling and to deal with the loss of scale information due to the transition from the
molecular model to the continuum model.
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Figure 10: Adaptive modeling for the lattices 11 × 11, 21 × 21, . . . , 61 × 61 for example 1.
For each case the final configuration which achieves a tolerance of 5 percent in the error in
the quantity of interest is shown.
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ments for example 1.

Figure 12: Solutions obtained on the reduced lattices L3 (after iteration 3) for the 11 × 11
lattice (top) and the 31 × 31 lattice (bottom).
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Figure 13: Accurate approximation of the continuum solution u0 for example 2.
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Figure 14: Lattice solutions of example 2 computed on the 11 × 11 and 31× 31 lattices.
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Figure 15: Sequence of surrogate models obtained by adaptive refinement for the 21 × 21
lattice (iterations s = 1 to 5). Again, the grey area represents the subregion in which the
solution is obtained using the continuum model. The complementary subregion corresponds
to the reduced lattice Ls. The number l ≤ s in the cells indicates the iteration at which the
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Figure 16: Adaptive modeling for the lattices 11 × 11, 21 × 21, . . . , 61 × 61 for example 2.
For each case the final configuration which achieves a tolerance of 10 percent in the error in
the quantity of interest is shown.
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Figure 17: Adaptive modeling for the lattices 11 × 11, 21 × 21, . . . , 61 × 61 for example 2.
For each case the final configuration which achieves a tolerance of 5 percent in the error in
the quantity of interest is shown.
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Figure 18: Effectivity indices (left) and relative errors (right) versus the number of refine-
ments for example 2 and γtol = 10 percent.
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Figure 19: Effectivity indices (left) and relative errors (right) versus the number of refine-
ments for example 2 and γtol = 5 percent.

22



Figure 20: Solutions obtained on the reduced lattices L2 (after iteration 2) for the 11 × 11
lattice (top) and the 31 × 31 lattice (bottom).
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